1,910 research outputs found

    Macroscopic Floquet topological crystalline steel pump

    Full text link
    The transport of a steel sphere on top of two dimensional periodic magnetic patterns is studied experimentally. Transport of the sphere is achieved by moving an external permanent magnet on a closed loop around the two dimensional crystal. The transport is topological i.e. the steel sphere is transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the steel sphere into various directions

    Transcranial optical monitoring for detecting intracranial pressure alterations in children with benign external hydrocephalus: a proof-of-concept study

    Get PDF
    Hydrocephalus; Optical techniques; PathophysiologyHidrocefalia; Técnicas ópticas; FisiopatologíaHidrocefàlia; Tècniques òptiques; FisiopatologiaSignificance Benign external hydrocephalus (BEH) is considered a self-limiting pathology with a good prognosis. However, some children present a pathological intracranial pressure (ICP) characterized by quantitative and qualitative alterations (the so-called B-waves) that can lead to neurological sequelae. Aim Our purpose was to evaluate whether there were cerebral hemodynamic changes associated with ICP B-waves that could be evaluated with noninvasive neuromonitoring. Approach We recruited eleven patients (median age 16 months, range 7 to 55 months) with BEH and an unfavorable evolution requiring ICP monitoring. Bedside, nocturnal monitoring using near-infrared time-resolved and diffuse correlation spectroscopies synchronized to the clinical monitoring was performed. Results By focusing on the timing of different ICP patterns that were identified manually by clinicians, we detected significant tissue oxygen saturation (StO2) changes (p = 0.002) and blood flow index (BFI) variability (p = 0.005) between regular and high-amplitude B-wave patterns. A blinded analysis looking for analogs of ICP patterns in BFI time traces achieved 90% sensitivity in identifying B-waves and 76% specificity in detecting the regular patterns. Conclusions We revealed the presence of StO2 and BFI variations—detectable with optical techniques—during ICP B-waves in BEH children. Finally, the feasibility of detecting ICP B-waves in hemodynamic time traces obtained noninvasively was shown.This work was realized with the support of the Department of Cirugía and Ciencias Morfológicas of the Universitat Autònoma de Barcelona. The work was supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie (Grant No. 675332) (BitMap: brain injury and trauma monitoring using advanced photonics) and the European Union’s Horizon 2020 Research and Innovation Program [Grant No. 101017113 (TinyBrains) and Grant No. 101016087 (VASCOVID)]; Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (Grant No. PI18/00468); Fundació CELLEX Barcelona, Fundació Mir Puig, Agencia Estatal de Investigación (PHOTOMETABO, Grant No. PID2019106481RBC31); the “Severo Ochoa” Program for Centers of Excelence in R&D (Grant No. CEX2019-000910-S); the Obra social “La Caixa” Foundation (LlumMedBcn), Generalitat de Catalunya (CERCA, AGAUR-2017-SGR-1380, RIS3CAT-001-P-001682 CECH), FEDER EC and LASERLAB EUROPE V (EC H2020 No. 871124); KidsBrainIT (ERANET NEURON); Fundació La Marató de TV3 (Grant Nos. 201724.31 and 201709.31)

    Assessing forest availability for wood supply in Europe

    Get PDF
    The quantification of forests available for wood supply (FAWS) is essential for decision-making with regard to the maintenance and enhancement of forest resources and their contribution to the global carbon cycle. The provision of harmonized forest statistics is necessary for the development of forest associated policies and to support decision-making. Based on the National Forest Inventory (NFI) data from 13 European countries, we quantify and compare the areas and aboveground dry biomass (AGB) of FAWS and forest not available for wood supply (FNAWS) according to national and reference definitions by determining the restrictions and associated thresholds considered at country level to classify forests as FAWS or FNAWS. FAWS represent between 75 and 95 % of forest area and AGB for most of the countries in this study. Economic restrictions are the main factor limiting the availability of forests for wood supply, accounting for 67 % of the total FNAWS area and 56 % of the total FNAWS AGB, followed by environmental restrictions. Profitability, slope and accessibility as economic restrictions, and protected areas as environmental restrictions are the factors most frequently considered to distinguish between FAWS and FNAWS. With respect to the area of FNAWS associated with each type of restriction, an overlap among the restrictions of 13.7 % was identified. For most countries, the differences in the FNAWS areas and AGB estimates between national and reference definitions ranged from 0 to 5 %. These results highlight the applicability and reliability of a FAWS reference definition for most of the European countries studied, thereby facilitating a consistent approach to assess forests available for supply for the purpose of international reportinginfo:eu-repo/semantics/publishedVersio

    Corresponding States of Structural Glass Formers

    Full text link
    The variation with respect to temperature T of transport properties of 58 fragile structural glass forming liquids (68 data sets in total) are analyzed and shown to exhibit a remarkable degree of universality. In particular, super-Arrhenius behaviors of all super-cooled liquids appear to collapse to one parabola for which there is no singular behavior at any finite temperature. This behavior is bounded by an onset temperature To above which liquid transport has a much weaker temperature dependence. A similar collapse is also demonstrated, over the smaller available range, for existing numerical simulation data.Comment: 6 pages, 2 figures. Updated References, Table Values, Submitted for Publicatio

    Renal function at two years in liver transplant patients receiving everolimus: results of a randomized, multicenter study

    Get PDF
    Abstract In a 24-month prospective, randomized, multicenter, open-label study, de novo liver transplant patients were randomized at 30 days to everolimus (EVR) + Reduced tacrolimus (TAC; n = 245), TAC Control (n = 243) or TAC Elimination (n = 231). Randomization to TAC Elimination was stopped prematurely due to a significantly higher rate of treated biopsy-proven acute rejection (tBPAR). The incidence of the primary efficacy endpoint, composite efficacy failure rate of tBPAR, graft loss or death postrandomization was similar with EVR + Reduced TAC (10.3%) or TAC Control (12.5%) at month 24 (difference -2.2%, 97.5% confidence interval [CI] -8.8%, 4.4%). BPAR was less frequent in the EVR + Reduced TAC group (6.1% vs. 13.3% in TAC Control, p = 0.010). Adjusted change in estimated glomerular filtration rate (eGFR) from randomization to month 24 was superior with EVR + Reduced TAC versus TAC Control: difference 6.7 mL/min/1.73 m(2) (97.5% CI 1.9, 11.4 mL/min/1.73 m(2), p = 0.002). Among patients who remained on treatment, mean (SD) eGFR at month 24 was 77.6 (26.5) mL/min/1.73 m(2) in the EVR + Reduced TAC group and 66.1 (19.3) mL/min/1.73 m(2) in the TAC Control group (p < 0.001). Study medication was discontinued due to adverse events in 28.6% of EVR + Reduced TAC and 18.2% of TAC Control patients. Early introduction of everolimus with reduced-exposure tacrolimus at 1 month after liver transplantation provided a significant and clinically relevant benefit for renal function at 2 years posttransplant

    The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo

    Get PDF
    The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells

    Automaticity in sequence-space synaesthesia: a critical appraisal of the evidence

    Get PDF
    For many people, thinking about certain types of common sequence - for example calendar units or numerals - elicits a vivid experience that the sequence members occupy spatial locations which are in turn part of a larger spatial pattern of sequence members. Recent research on these visuospatial experiences has usually considered them to be a variety of synaesthesia, and many studies have argued that this sequence-space synaesthesia is an automatic process, consistent with a traditional view that automaticity is a key property of synaesthesia. In this review we present a critical discussion of data from the three main paradigms that have been used to argue for automaticity in sequence-space synaesthesia, namely SNARC-like effects (Spatial-Numerical-Association-of-Response-Codes), spatial cueing, and perceptual incongruity effects. We suggest that previous studies have been too imprecise in specifying which type of automaticity is implicated. Moreover, mirroring previous challenges to automaticity in other types of synaesthesia, we conclude that existing data are at best ambiguous regarding the automaticity of sequence-space synaesthesia, and may even be more consistent with the effects of controlled (i.e., non-automatic) processes. This lack of strong evidence for automaticity reduces the temptation to seek explanations of sequence-space synaesthesia in terms of processes mediated by qualitatively abnormal brain organization or mechanisms. Instead, more parsimonious explanations in terms of extensively rehearsed associations, established for example via normal processes of visuospatial imagery, are convergent with arguments that synaesthetic phenomena are on a continuum with normal cognition. (c) 2012 Elsevier Ltd. All rights reserved

    Use of Quantitative Pharmacology in the Development of HAE1, a High-Affinity Anti-IgE Monoclonal Antibody

    Get PDF
    HAE1, a high-affinity anti-IgE monoclonal antibody, is discussed here as a case study in the use of quantitative pharmacology in the development of a second-generation molecule. In vitro, preclinical, and clinical data from the first-generation molecule, omalizumab, were heavily leveraged in the HAE1 program. A preliminary mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for HAE1 was developed using an existing model for omalizumab, together with in vitro binding data for HAE1 and omalizumab. When phase I data were available, the model was refined by simultaneously modeling PK/PD data from omalizumab studies with the available HAE1 phase I data. The HAE1 clinical program was based on knowledge of the quantitative relationship between a pharmacodynamic biomarker, suppression of free IgE, and clinical response (e.g., lower exacerbation rates) obtained in pivotal studies with omalizumab. A clinical trial simulation platform was developed to predict free IgE levels and clinical responses following attainment of a target free IgE level (≤10 IU/ml). The simulation platform enabled selection of four doses for the phase II dose-ranging trial by two independent methods: dose-response non-linear fitting and linear mixed modeling. Agreement between the two methods provided confidence in the doses selected. Modeling and simulation played a large role in supporting acceleration of the HAE1 program by enabling data-driven decision-making, often based on confirmation of projections and/or learning from incoming new data
    corecore